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Abstract The direct effects of three soybean parentages,

each represented by an Aphis glycines-resistant and sus-

ceptible isoline, on the fitness and performance of two key

predators (Orius insidiosus and Harmonia axyridis) were

evaluated in the laboratory. Predators were reared from

hatch through adulthood in Petri dishes with cut trifoliolate

leaves of the designated soybean variety, using eggs of

Ephestia kuehniella as surrogate prey to eliminate prey-

mediated effects of the host plant. Preimaginal survival and

development, sex ratio, adult longevity, fecundity, and size

were compared among treatments and a no-plant control.

An additional experiment compared life-history parameters

of predators caged with soybean versus Ipomoea hederacea

(ivyleaf morning glory). Aphid resistance reduced the adult

longevity of H. axyridis, but O. insidiosus was unaffected

by resistance traits. However, adult O. insidiosus lived

longer on soybeans with Group C base genetics than the

other soybean varieties. Other parameters were not affected

by soybean base genetics or resistance, but both predators

generally performed worse on soybean than on I. hedera-

cea or no-plant controls. The results suggest that soybean

varietal selection, particularly with respect to A. glycines-

resistance, may directly affect biological control agents.

Also, implications of the generally poor suitability of

soybean for natural enemies are discussed within the con-

text of current crop production practices.

Keywords Biological control � Glycine max �
Orius insidiosus � Harmonia axyridis � Host

plant resistance � Integrated pest management �
Ipomoea hederacea � Omnivory � Predator

Introduction

Substantial intraspecific variation in chemistry and archi-

tecture occurs in crops, and heterogeneity in these traits

creates a continuum in the suitability of a crop plant for

pests and natural enemies alike. Selecting for herbivore

resistance within crops is predicated upon this inherent

genetic variability, and this tactic is frequently employed as

a cornerstone of integrated pest management (IPM) pro-

grams for insect pests (Panda and Khush 1995; Smith

2005). Host plant resistance (HPR) is often compatible

with biological control, sometimes even leading to a syn-

ergistic or additive lowering of pest densities (Pair et al.

1986; Starks et al. 1972; van Emden 1986; van Emden

1995; Wyatt 1970). Although they are best appreciated for

their ability to consume prey, arthropods assigned to higher

trophic levels frequently rely on plant-based resources for

food and habitat (Barbosa 1998; Landis et al. 2000;

Lundgren 2009; Pickett and Bugg 1998). The reliance of

natural enemies on crop plants for food and shelter some-

times results in direct adverse effects of crop characteristics

on biological control agents (Hare 1992). Thus, there is a

need to establish which crop varieties, especially those that
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express HPR, are compatible with predators and parasitoids

within IPM systems.

Natural enemies may interact with crop phenotype directly

or through prey (van Emden 1995). Reduced prey quality and

availability resulting from HPR have an obvious effect on

natural enemies, and these are irrefutably the most commonly

documented adverse interactions of crop phenotypes with

higher trophic levels (Kauffman and Flanders 1985; Kennedy

et al. 1975; Orr and Boethel 1986; van Emden 1995). Phe-

notypic variation in plant architecture and morphology also

may influence natural enemies via traits such as trichome

density or structure and leaf-surface texture or waxiness

(Eigenbrode et al. 1996; Eigenbrode et al. 1995; Simmons

and Gurr 2004; Treacy et al. 1987). Finally, phytochemistry

varies greatly within a plant species, and differences in syn-

omone production and plant nutrition have been documented

to differentially affect the foraging and fitness of omnivorous

natural enemies (Hagen 1986; Lundgren 2009; Lundgren and

Wiedenmann 2004; van Emden 1995).

Soybean (Glycine max L.) is a prevalent crop in North

America, and the soybean aphid, Aphis glycines Matsum-

ura, is its primary pest (Venette and Ragsdale 2004).

Several soybean lines show resistance to A. glycines

(Hesler and Dashiell 2007; Hesler and Dashiell 2008;

Hesler et al. 2007; Hill et al. 2004; Li et al. 2004; Mensah

et al. 2005), and resistant varieties of soybean are likely to

be available to farmers soon. Even so, few studies have

examined the effects of different soybean genotypes or

HPR on key natural enemies of A. glycines.

Harmonia axyridis (Pallas) and Orius insidiosus (Say)

represent two abundant natural enemies in soybean that are

implicated in reducing A. glycines populations (Brosius

et al. 2007; Butler and O’Neil 2007; Costamagna and

Landis 2006; Costamagna and Landis 2007; Costamagna

et al. 2007; Fox et al. 2004; Harwood et al. 2007; Harwood

et al. 2009; Mignault et al. 2006; Rutledge and O’Neil

2005; Schmidt et al. 2008). However, their seasonal phe-

nologies and feeding ecologies differ in ways that could

affect their relative direct exposure to potentially harmful

characteristics of soybean. Both predators consume plant

tissue (at least during the larval stage for H. axyridis)

(Corey et al. 1998; Dicke and Jarvis 1962; Lundgren et al.

2008; Lundgren et al. 2004; Moser et al. 2008), but osten-

sibly O. insidiosus relies on non-prey foods more heavily

than H. axyridis. Feeding style also differs between these

predators, as H. axyridis has chewing and O. insidiosus has

sucking mouthparts. Finally, O. insidiosus is phenologically

most abundant during the vegetative stages of soybean, and

H. axyridis numbers swell during the middle and late

reproductive stages of the crop. Consequently, O. insidiosus

is believed to be most important as a biological control

agent before A. glycines populations surge and H. axyridis

responds to the prevalent aphids later in the season.

The effects of aphid resistance and other variable traits

of soybean have not been evaluated against key natural

enemies of A. glycines. The fact that the target herbivore is

affected by HPR challenges the separation of direct and

prey-mediated effects on natural enemies. The current

study focuses specifically on direct effects of soybean base

genetics and aphid resistance on H. axyridis and O. insid-

iosus using surrogate prey (Ephestia kuehniella Zeller

eggs) of high nutritional quality that is inherently unaltered

by the plants. Specifically, the research tests the hypotheses

that 1) soybean base genetics do not directly affect the life-

history parameters of these two predators, and 2) that

predator life histories are comparable between aphid-

resistant and susceptible soybean.

Methods

Insects

Orius insidiosus adults were obtained from Koppert Can-

ada Limited (Scarborough, ON, Canada), and maintained

on E. kuehniella (Lepidoptera: Pyralidae) eggs and 1–2 cm

green bean (Phaseolus vulgaris L.) sections for moisture.

Eggs laid into green beans were checked daily, and newly

eclosed nymphs were isolated. Harmonia axyridis adults

were collected from an overwintering site in Brookings,

SD, USA. Collected adults were maintained for \60 d on

A. glycines (soybean aphids), E. kuehniella eggs, honey,

and water. Mated females were isolated from the colony,

sexed (McCornack et al. 2004), and allowed to lay eggs on

their plastic dish. Larvae were isolated on the days they

hatched. Neonate nymphs and larvae were randomly

assigned to treatments described below.

Plants

Six soybean lines were compared that represent three dis-

tinct parentages, each containing an A. glycines-resistant

and a susceptible isoline. These are designated here as

Group A: lines LD05-16118 (LD05; resistant) and SD01-

76R (SD01; susceptible); Group B: lines LDXG04-18-2-4

(IL-4; resistant) and LDXG04018005-21 (IL-105; suscep-

tible); and Group C: lines LDXG04-23-2-11 (IL-35;

resistant) and LDXG04-23-2-22 (IL-46; susceptible). The

aphid-resistant varieties all expressed the Rag1 gene and

shared a Dowling parent.

For each soybean line, 20 pots (25.4 cm diam.) with

individual plants were maintained in a single greenhouse

with climatic conditions representative of early soybean

development in our region: 24 and 13�C for 12 h periods

each diel cycle, and a photoperiod of 15:9 (L:D). Plants

were grown in 2:1:1 parts soil:peat:vermiculite, and were
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watered as needed. The assays were timed to reflect when

these two predator species are believed to be most impor-

tant in terms of A. glycines suppression. Thus, plants were

initially staged at the V4 and R1 stages for the O. insid-

iosus and H. axyridis assays, respectively. For each

individual predator, a randomly selected trifoliolate leaf

was snipped at the petiole base and immediately placed

through a hole in the cap of a water-filled, 1.5-ml micro-

centrifuge tube.

Ipomoea hederacea (L.) Jacq. (ivyleaf morning glory)

plants were used in a follow-up experiment to assess the

general suitability of soybeans as a habitat for natural

enemies. These plants were grown individually in 10-cm

square pots under identical growing conditions to those

described above. Plants were C25 cm long when assays

were conducted.

Orius insidiosus assays

Neonates (N = 210) were evenly and randomly assigned to

one of seven treatments, including each of the six soybean

lines and a no-plant control. Each experimental arena

consisted of a 15 cm diam Petri dish containing a water-

soaked cotton wick and E. kuehniella eggs (initially 10 and

increasing to 20 eggs as the nymphs aged), which were

replaced every 96 h. Single trifoliolate soybean leaves per

arena were changed every 48 h, and the Petri dishes were

sealed with a strip of Parafilm� (Pechiney Plastic Pack-

aging, Menasha, WI, USA) to reduce escape by the

nymphs. The arenas were held at 27�C, with a 16:8 (L:D)

photoperiod and 80% relative humidity. Arenas were

checked daily, noting whether the nymph had died or

completed development to adulthood. Arenas with missing

nymphs were excluded from analyses, and the sample size

per treatment was adjusted accordingly.

Adult O. insidiosus were sexed and were maintained in

an identical experimental arena as those they developed in,

except that a 1-cm long section of green bean was provided

to the no-plant control as an oviposition substrate. Each

female was mated with a male of their treatment (who was

at least 72 h old) for 24 h within 48 h of eclosion, and

subsequently every 72 h with a different male for the rest

of their lives. The plant tissue in each dish was examined

daily for the number of eggs laid. Upon their death, the

head capsule width (posterior to the eyes) was measured

microscopically at 50–809.

The mean development time, adult longevity, fecundity,

and head widths were calculated for each treatment and

were compared using Kruskal-Wallis non-parametric

ANOVA. The percent survival to adulthood and sex ratio

(proportion female) were compared among treatments using

two-way contingency tables and Pearson chi-square analy-

ses. The treatment means for each of these parameters were

compared to assess the effects of soybean base genetics

(n = 2 each treatment) and resistance (n = 3 each treat-

ment) on O. insidiosus using separate non-parametric

assays. Mann-Whitney U tests were applied to resistance-

susceptible comparisons involving continuous variables,

and Kruskal-Wallis ANOVA to the base genetics compar-

isons with continuous variables.

Harmonia axyridis assays

A nearly identical experimental procedure was used to

assess the effects of soybean base genetics and A. gly-

cines resistance on H. axyridis. Some exceptions to the

protocol outlined above are that the durations of each

stadium and the pupal stage were noted in addition to

total preimaginal development. Adult H. axyridis can

live for many weeks, and the experiment was terminated

at 15 d after the last adult eclosed. Thus, adult survival

was necessarily measured as a proportional value (%

alive at 15 d) rather than a continuous variable as in the

O. insidiosus assay. Finally, the length of the metatibia,

measured microscopically at 50–809, was used as an

index of adult size.

Soybean versus I. hederacea assays

Due to poor performance of both predators reared on all

soybean lines, an additional set of assays was performed

to determine whether plant tissue was generally harmful

to developing O. insidiosus and H. axyridis. Orius insid-

iosus performs well and preferentially oviposits on

I. hederacea leaves (Lundgren and Fergen 2006; Lund-

gren et al. 2008), so this plant species was chosen to

evaluate the efficacy of our experimental design. The

experimental design was similar to that outlined above,

but only 20 individuals of each predator were tested per

treatment, and the experiments were terminated at eclo-

sion. The three treatments evaluated in this experiment

were soybean IL-105 petioles (randomly selected from the

susceptible varieties), I. hederacea, and a no-plant con-

trol. Equivalent leaf areas of I. hederacea and soybean

were used. For O. insidiosus assays, preimaginal devel-

opment times and the proportion surviving to adulthood

were compared among treatments with Kruskal-Wallis

non-parametric ANOVA and a two-way contingency table

with Pearson chi-square test, respectively (sample sizes

were adjusted for nymphs lost during the experiment). For

H. axyridis, the mean duration of each stadium and total

larval development were compared among treatments

using Kruskal-Wallis ANOVA, and the proportion sur-

viving to adulthood was analyzed with a two-way

contingency table.
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Results

Orius insidiosus preimaginal assays

There were differences in the preimaginal survival

(v2
6 ¼ 15:62, P = 0.02) and developmental rates (v2

6 ¼
15:41, P = 0.02) of O. insidiosus nymphs among the dif-

ferent treatments when the no-plant controls were included

in the analysis (Table 1). When comparisons were made

exclusively among the soybean treatments, there were no

differences in nymphal survival or development time

among base genetics (survival: v2
2 ¼ 1:65, P = 0.44;

development: v2
2 ¼ 3:92, P = 0.14) or between resistant

and susceptible varieties (survival: v2
1 ¼ 0:73, P = 0.39;

development time: v2
1 ¼ 0:50, P = 0.48).

Orius insidiosus adult assays

There was an effect of treatment on the longevity

(v2
1 ¼ 0:73, P \ 0.001), and fecundity (v2

6 ¼ 14:08,

P = 0.02) when analysis included the no-plant control

(Table 1). There were no effects of treatment on adult head

capsule width (v2
6 ¼ 5:66, P = 0.34) and sex ratio

(v2
6 ¼ 4:42, P = 0.62). When the no-plant control was

excluded from the analysis, there were no varietal effects

on these parameters. There was an effect of base genetics

on adult longevity (v2
2 ¼ 10:40, P \ 0.01), but aphid

resistance did not affect adult longevity (v2
1 ¼ 0:56,

P = 0.45). There were no effects of base genetics

(v2
2 ¼ 3:64, P = 0.16) or aphid resistance (v2

1 ¼ 0:41,

P = 0.52) on fecundity.

Harmonia axyridis preimaginal assays

Developmental rates (v2
6 ¼ 52:13, P \ 0.001) and survival

(v2
6 ¼ 36:53, P \ 0.001) of H. axyridis larvae differed

significantly among treatments when analysis included the

no-plant control (Table 2). When the no-plant controls

were removed from analyses, there was no effect of variety

on development time (v2
6 ¼ 5:99, P = 0.31) and survival

(v2
5 ¼ 9:49, P = 0.09). Aphid resistance did not affect

development time (v2
1 ¼ 0:19, P = 0.66) and the survival

(v2
1 ¼ 1:77, P = 0.18) of H. axyridis larvae. Base genetics

also did not affect development time (v2
2 ¼ 3:82, P = 0.15)

and larval survival (v2
2 ¼ 2:91, P = 0.23).

Harmonia axyridis adult assays

When analysis included the no-plant control, there was a

treatment effect on fecundity (v2
6 ¼ 14:11, P = 0.03),

proportion of adults surviving for 15 d post-eclosion

(v2
6 ¼ 25:02, P \ 0.001), post-eclosion longevity (v2

6 ¼
50:83, P \ 0.001), adult weight (v2

6 ¼ 24:52, P \ 0.001),

and hind tibial length (v2
6 ¼ 18:26, P \ 0.001), but not

adult sex ratio (v2
6 ¼ 5:84, P = 0.44) (Table 2). When the

no-plant control was excluded from analysis, there was no

varietal effect on adult weight (v2
5 ¼ 3:82, P = 0.56), adult

tibial length (v2
5 ¼ 6:47, P = 0.26), post-eclosion longevity

(v2
5 ¼ 9:96, P = 0.07), proportion surviving 15 d post-

eclosion (v2
5 ¼ 9:12, P = 0.11) and fecundity (v2

5 ¼ 7:30,

P = 0.20).

There were no effects of aphid resistance on fecundity

(v2
1 ¼ 0:45, P = 0.50), adult tibial length (v2

1 ¼ 0:37,

P = 0.54), or adult weight (v2
1 ¼ 0:27, P = 0.60), but

aphid-resistant soybean varieties reduced adult longevity

(v2
1 ¼ 4:86, P = 0.03) and the proportion of adults that

survived 15 d post-eclosion (v2
1 ¼ 5:85, P = 0.02). Base

genetics of the soybean did not affect adult weight

(v2
2 ¼ 2:94, P = 0.23), adult tibial length (v2

2 ¼ 2:43,

P = 0.30), post-eclosion longevity (v2
2 ¼ 2:37, P = 0.31),

the proportion surviving 15 d post-eclosion (v2
2 ¼ 1:35,

P = 0.51) and fecundity (v2
2 ¼ 4:80, P = 0.09).

Soybean versus Ipomoea hederacea

There was a treatment effect on preimaginal survival of

O. insidiosus when analysis included the no-plant control

(v2
2 ¼ 12:96, P = 0.002), but not on developmental rates

Table 1 The influence of soybean genotypes on Orius insidiosus performance (mean values ± SE)

Variety Base

genetics

Resistant/

susceptible

Nymphs Adults

Development;

d

Survival;

% (n)

Longevity; d

(n)

Sex ratio; %

female

Fecundity; eggs per

female (n)

Size; head capsule

widths; lm (n)

SD01 A Susceptible 9. 6 ± 0.6 36.0 (25) 3.3 ± 0.6 (9) 44.4 (9) 0.3 ± 0.3 (4) 300.0 ± 12.5 (2)

LD05 A Resistant 9.3 ± 0.4 36.4 (22) 4.8 ± 0.9 (8) 50.0 (8) 7.5 ± 6.2 (4) 312.5 ± 0 (2)

IL-105 B Susceptible 9. 6 ± 0.4 36.0 (25) 5.1 ± 0.6 (9) 33.3 (9) 7.0 ± 4.4 (3) 303.1 ± 3.1 (4)

IL-4 B Resistant 10.3 ± 0.6 33.3 (24) 4.0 ± 0.7 (8) 50.0 (8) 10.0 ± 5.7 (4) 306.3 ± 6.2 (2)

IL-46 C Susceptible 8.8 ± 0.3 34.8 (23) 9.1 ± 1.5 (8) 12.5 (8) 51.0 (1) 314.6 ± 3.8 (6)

IL-35 C Resistant 9.4 ± 0.4 61.9 (21) 6.2 ± 1.9 (5) 40.0 (5) 4.5 ± 3.5 (2) 312.5 (1)

No-plant control 8.4 ± 0.2 77.3 (22) 20.1 ± 1.7 (17) 52.9 (17) 88.4 ± 20.7 (9) 318.4 (17)
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(v2
2 ¼ 2:32, P = 0.31) (Table 3). When nymphal survival

is directly compared between I. hederacea and soybean,

those nymphs reared on I. hederacea survive better

(v2
1 ¼ 8:66, P = 0.003), but nymphs developed at similar

rates in these two treatments (v2
1 ¼ 33, P = 0.33)

(Table 3). Head widths of adult O. insidiosus were unaf-

fected by treatment (v2
2 ¼ 4:45, P = 0.11) (Table 3).

There was a treatment effect on preimaginal survival of

H. axyridis (v2
2 ¼ 13:63, P = 0.001), and on preimaginal

developmental rates (v2
2 ¼ 17:66, P \ 0.001) when the

analysis included the no-plant control (Table 3). Harmonia

axyridis survived equally well on I. hederacea and soybean

(v2
1 ¼ 1:60, P = 0.21), but larvae reared with I. hederacea

developed faster than those with soybean (v2
1 ¼ 15:5,

P = 0.006) (Table 3). The differences between H. axyridis

reared on I. hederacea and soybean were only present

during the first and fourth stadia (first instars: v2
1 ¼ 62,

P = 0.004; second instars: v2
1 ¼ 120, P = 0.89; third

instars: v2
1 ¼ 79, P = 0.73; fourth instars: v2

1 ¼ 79,

P = 0.047). There was no treatment effect on H. axyridis

hind tibial lengths (v2
2 ¼ 1:33, P = 0.51), but there was on

dry weight (v2
2 ¼ 21:39, P \ 0.001) (Table 3). Beetles

exposed to I. hederacea were heavier than those exposed to

soybean (v2
1 ¼ 89, P = 0.002) (Table 3).

Discussion

Base genetics and aphid resistance in soybean were shown

to directly affect key predators of A. glycines in laboratory

assays for three out of 13 traits measured (when no-plant

controls were excluded). However, soybean irrespective of

genotype was a relatively poor plant for O. insidiosus and

H. axyridis, as both predators performed substantially

better when reared with leaves of I. hederacea than with

soybean. Direct adverse effects of soybean traits on pre-

dators may partially explain the poor performance of

predators reared in laboratory studies with soybeans and

prey (Butler and O’Neil 2007a; Butler and O’Neil 2007b,

but see Naranjo and Stimac 1985; Mignault et al. 2006).

Rogers and Sullivan (1986, 1987) found that adverse

effects of soybean on omnivorous predators differed

depending on whether whole plants or leaf sections were

used in the assays. In their research, resistant soybeans only

affected Geocoris punctipes (Say) when the leaves were

attached to the plant. That detached leaves reduced

H. axyridis performance in our study suggests that the

Rag1 gene operates differently than some other forms of

herbivore resistance currently known in soybeans. Variable

suitability among soybean varieties for these different

predators could potentially be manipulated to favor pre-

dators of A. glycines (Bottrell et al. 1998). Adult

O. insidiosus lived longer on soybeans possessing Group C

base genetics, and aphid resistance in soybean was asso-

ciated with reduced longevity in H. axyridis adults. The

direct effects of soybean genetics on biological control

should be considered when integrating HPR and varietal

selections into IPM systems.

The mechanisms that operate in this HPR system are

largely unknown, but our data are in line with the

hypothesis that plant chemistry or nutrition at the level of

plant variety may reduce predator performance. Although

confined with plant tissue, there was sufficient space

within the arenas that the predators could have avoided

contact with the plant tissues (indeed, the prey were not

in contact with the soybean leaves). This possibly sug-

gests that nutritional requirements of the predators

necessitated that they consume plant-based foods that

were ultimately toxic to them. Alternatively, the predators

may not have consumed plant material, but were affected

through direct contact with soybean or by volatile emis-

sions from soybean plants. Soybean and other legumes

possess an array of secondary chemicals that aid in their

defense against herbivores (Chiang and Norris 1983;

Pusztai et al. 1983; Seigler 2003). Although the genes

responsible for A. glycines resistance in soybean have

been isolated, the mechanism that confers resistance has

not been determined (Hill et al. 2006a; Hill et al. 2006b).

However this resistance trait operates against A. glycines,

it also functions against H. axyridis to produce shorter-

lived adults.

It is striking that for both predators, the life stage most

affected by soybean treatments was the adult stage. In both

predator species, evidence indicates that the immature

stages are more phytophagous than the adult stages

(Lundgren et al. 2008; Lundgren et al. 2004). This would

suggest that either the adult stage uses soybean differently

than the immatures in ways that increases their exposure to

lethal characteristics of the soybean, or that the physiology

of adults renders them particularly prone to the effects of

the crop. An additional explanation is that some of the

effects of the soybean varieties may be chronic, and only

manifest themselves after prolonged exposures. It seems

likely that the high mortality (usually [50%) incurred by

immatures of these predators on soybean masks treatment

effects experienced by this life stage.

Finally, the fact that natural enemies performed poorly

on soybean makes a defensible argument for the inclusion

of non-crop plants within soybean fields as a means of

conserving natural enemies of A. glycines. Predators reared

with soybean developed more slowly, had lower survival,

and had reduced size compared to those reared with

I. hederacea leaves. Currently, conventional production

practices entail the use of herbicides to maintain large

monocultures of soybean, and these practices may be

exacerbating problems with A. glycines. While it is true

J. G. Lundgren et al.
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that predators are able to colonize soybean monocultures,

additional plant diversity at the landscape and within-field

levels favors natural enemies in cropland (Landis and

Menalled 1998; Landis et al. 2005; Thies and Tscharntke

1999). For example, Orius insidiosus is known to prefer-

entially oviposit on plants that best support developing

nymphs, and they lay eggs on non-crop plants more fre-

quently than on the crop within soybean fields (Lundgren

et al. 2008; Lundgren et al. 2009). Whether and how non-

crop plants can be implemented in order to reduce

A. glycines densities remains to be established.
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